Dimension-independent likelihood-informed MCMC
نویسندگان
چکیده
منابع مشابه
Dimension-independent likelihood-informed MCMC
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that, in principle, can be described as functions. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. Firs...
متن کاملLikelihood-informed dimension reduction for nonlinear inverse problems
The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively lowdimensional subspace of the parameter space. We present a dimension reduction approach that de...
متن کاملMcmc Perspectives on Simulated Likelihood Estimation
A major stumbling block in multivariate discrete data analysis is the problem of evaluating the outcome probabilities that enter the likelihood function. Calculation of these probabilities involves high-dimensional integration, making simulation methods indispensable in both Bayesian and frequentist estimation and model choice. We review several existing probability estimators and then show tha...
متن کاملAdaptive independent sticky MCMC algorithms
Monte Carlo methods have become essential tools to solve complex Bayesian inference problems in different fields, such as computational statistics, machine learning, and statistical signal processing. In this work, we introduce a novel class of adaptive Monte Carlo methods, called adaptive independent sticky Markov Chain Monte Carlo (MCMC) algorithms, to sample efficiently from any bounded targ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2016
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2015.10.008